MATH 245 S22, Exam 3 Solutions

- 1. Carefully state the following theorems: Associativity Theorem, Distributivity Theorem The Associativity Theorem states that, for any sets R, S, T, we have (a) $R \cap (S \cap T) = (R \cap S) \cap T$; and (b) $R \cup (S \cup T) = (R \cup S) \cup T$; and (c) $R\Delta(S\Delta T) = (R\Delta S)\Delta T$. The Distributivity Theorem states that, for any sets R, S, T, we have (a) $R \cap (S \cup T) = (R \cap S) \cup (R \cap T)$; and (b) $R \cup (S \cap T) = (R \cup S) \cap (R \cup T)$.
- 2. Carefully define the following terms: reflexive closure, $R^{(k)}$ Given a set S and any relation R on S, the reflexive closure of R is defined as the relation $R \cup \{(x, x) : x \in S\}$. Given any set S and any relation R on S, we define $R^{(1)}$ as just R, and for $k \ge 2$, we define $R^{(k)} = R \circ R^{(k-1)}$.
- 3. Let S, T, U be sets with $S \subseteq U$ and $T \subseteq U$. Prove that $S \setminus T = S \cap T^c$. To prove two sets are equal we must prove that each is a subset of the other. (part 1) Let $x \in S \setminus T$. Then $x \in S \land x \notin T$. By simplification twice, $x \in S$ and $x \notin T$. Because $x \in S$ and $S \subseteq U$, we have $x \in U$. By conjunction, $x \in U \land x \notin T$; hence $x \in T^c$. By conjunction, $x \in S \land x \in T^c$; hence $x \in S \cap T^c$. (part 2) Let $x \in S \cap T^c$. Then $x \in S \land x \in T^c$. By simplification twice, $x \in S$ and $x \notin T$. By simplification, $x \notin S \land x \notin T$; hence $x \in T^c$. Hence $x \in U \land x \notin T$. By simplification, $x \notin S \land x \notin T$; hence $x \in S \setminus T$.
- 4. Prove or disprove: For all sets S, T, we must have $S \setminus T \subseteq S \Delta T$. The statement is true. We can prove this directly, or with a theorem. We begin by letting S, T be arbitrary sets.

(DIRECTLY) Let $x \in S \setminus T$. Then $x \in S \land x \notin T$. By addition, $(x \in S \land x \notin T) \lor (x \notin S \land x \in T)$. Hence $x \in S \Delta T$.

(THEOREM) A in the book (Theorem 8.12(b)) states that $S\Delta T = (S \setminus T) \cup (T \setminus S)$. To finish we need to do exercise 8.14, proving that $A \subseteq A \cup B$ for all sets A, B. [Note: you may cite theorems but not exercises on exams.] The proof is: Let $x \in A$. By addition, $x \in A \lor x \in B$. Hence $x \in A \cup B$.

5. Find a set S such that $S \cap (S \times 2^S)$ is nonempty. Give S, carefully, in list notation.

Many solutions are possible; it is important to have correct notation. One possible answer is $S = \{1, (1, \{1\})\}$. S contains two elements: the number 1 and the ordered pair $(1, \{1\})$. $(1, \{1\}) \in S$ because it is one of the two elements of S. Also $(1, \{1\}) \in S \times 2^S$ because it is an ordered pair whose first coordinate, namely 1, is an element of S and whose second coordinate, namely $\{1\}$, is an element of 2^S . Because $(1, \{1\})$ is in both S and $S \times 2^S$, it is in their intersection.

- 6. Let $S = \{x \in \mathbb{Z} : \exists y \in \mathbb{Z}, x = 6y\}$ and $T = \{x \in \mathbb{Z} : \exists y \in \mathbb{Z}, xy = 60\}$. Calculate, with justification, $|S \cap T|$. We seek integers x in both S and in T. The first property means that x = 6k, for some integer k. The second means that xy = 6ky = 60, for some integer y. Hence ky = 10, so k|10. This gives solutions $k = \pm 1, \pm 2, \pm 5, \pm 10$; i.e. $S \cap T = \{6, -6, 12, -12, 30, -30, 60, -60\}$ so $|S \cap T| = 8$.
- 7. Let A, B, C be sets with $A \setminus B \subseteq C$. Prove that $A \subseteq B \cup C$. Let $x \in A$. There are now two cases, depending on whether $x \in B$ or $x \notin B$. Case $x \in B$: By addition, $x \in B \lor x \in C$, so $x \in B \cup C$. Case $x \notin B$: By conjunction, $x \in A \land x \notin B$, so $x \in A \setminus B$. Because $A \setminus B \subseteq C$, we have $x \in C$. By addition, $x \in B \lor x \in C$, so $x \in B \cup C$. In both cases, $x \in B \cup C$.
- 8. Let S, T be sets and R_1, R_2 relations from S to T. Suppose that $R_1 \subseteq R_2^{-1}$ and $R_2 \subseteq R_1^{-1}$. Prove that $R_1 = R_2^{-1}$.

We have $R_1 \subseteq R_2^{-1}$ by hypothesis, to it only remains to prove that $R_2^{-1} \subseteq R_1$. Let $x \in R_2^{-1}$ be arbitrary. Then x = (b, a), where $(a, b) \in R_2$. Because $R_2 \subseteq R_1^{-1}$, we have $(a, b) \in R_1^{-1}$. Thus $(b, a) \in R_1$. But that's just x, so we have proved $x \in R_1$.

For problems 9,10: Let $A = \{1, 2, 3, 4\}$ and take $R = \{(1, 1), (1, 2), (2, 1), (3, 4), (4, 3)\}$, a relation on A.

- 9. Draw the digraph representing R. Determine, with justification, whether or not R is each of: reflexive, symmetric, and transitive.
 - $1 \stackrel{\text{l}}{\longrightarrow} 2 \qquad R \text{ is not reflexive because, e.g., } (2,2) \notin R.$ R is symmetric because for every pair of vertices, either both directed edges or neither are present.
 - $4 \xrightarrow{3} R$ is not transitive because, e.g., $(3,4), (4,3) \in R$ and $(3,3) \notin R$.
- 10. Compute $R \circ R$. Give your answer both as a digraph and as a set.

$$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

 $R \circ R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}.$

Note: every missing or extra piece in a solution, will cost points.

 $\overset{4}{\bigcirc}$ $\overset{3}{\bigcirc}$