MATH 245 S22, Exam 3 Solutions

1. Carefully state the following theorems: Associativity Theorem, Distributivity Theorem The Associativity Theorem states that, for any sets R, S, T, we have (a) $R \cap(S \cap T)=$ $(R \cap S) \cap T$; and (b) $R \cup(S \cup T)=(R \cup S) \cup T$; and (c) $R \Delta(S \Delta T)=(R \Delta S) \Delta T$. The Distributivity Theorem states that, for any sets R, S, T, we have (a) $R \cap(S \cup T)=$ $(R \cap S) \cup(R \cap T)$; and (b) $R \cup(S \cap T)=(R \cup S) \cap(R \cup T)$.
2. Carefully define the following terms: reflexive closure, $R^{(k)}$

Given a set S and any relation R on S, the reflexive closure of R is defined as the relation $R \cup\{(x, x): x \in S\}$. Given any set S and any relation R on S, we define $R^{(1)}$ as just R, and for $k \geq 2$, we define $R^{(k)}=R \circ R^{(k-1)}$.
3. Let S, T, U be sets with $S \subseteq U$ and $T \subseteq U$. Prove that $S \backslash T=S \cap T^{c}$.

To prove two sets are equal we must prove that each is a subset of the other.
(part 1) Let $x \in S \backslash T$. Then $x \in S \wedge x \notin T$. By simplification twice, $x \in S$ and $x \notin T$. Because $x \in S$ and $S \subseteq U$, we have $x \in U$. By conjunction, $x \in U \wedge x \notin T$; hence $x \in T^{c}$. By conjunction, $x \in S \wedge x \in T^{c}$; hence $x \in S \cap T^{c}$.
(part 2) Let $x \in S \cap T^{c}$. Then $x \in S \wedge x \in T^{c}$. By simplification twice, $x \in S$ and $x \in T^{c}$. Hence $x \in U \wedge x \notin T$. By simplification, $x \notin T$. By conjunction, $x \in S \wedge x \notin T$; hence $x \in S \backslash T$.
4. Prove or disprove: For all sets S, T, we must have $S \backslash T \subseteq S \Delta T$.

The statement is true. We can prove this directly, or with a theorem. We begin by letting S, T be arbitrary sets.
(DIRECTLY) Let $x \in S \backslash T$. Then $x \in S \wedge x \notin T$. By addition, $(x \in S \wedge x \notin T) \vee(x \notin$ $S \wedge x \in T)$. Hence $x \in S \Delta T$.
(THEOREM) A in the book (Theorem 8.12(b)) states that $S \Delta T=(S \backslash T) \cup(T \backslash S)$. To finish we need to do exercise 8.14, proving that $A \subseteq A \cup B$ for all sets A, B. [Note: you may cite theorems but not exercises on exams.] The proof is: Let $x \in A$. By addition, $x \in A \vee x \in B$. Hence $x \in A \cup B$.
5. Find a set S such that $S \cap\left(S \times 2^{S}\right)$ is nonempty. Give S, carefully, in list notation.

Many solutions are possible; it is important to have correct notation. One possible answer is $S=\{1,(1,\{1\})\}$. S contains two elements: the number 1 and the ordered pair $(1,\{1\}) .(1,\{1\}) \in S$ because it is one of the two elements of S. Also $(1,\{1\}) \in S \times 2^{S}$ because it is an ordered pair whose first coordinate, namely 1 , is an element of S and whose second coordinate, namely $\{1\}$, is an element of 2^{S}. Because $(1,\{1\})$ is in both S and $S \times 2^{S}$, it is in their intersection.
6. Let $S=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x=6 y\}$ and $T=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x y=60\}$. Calculate, with justification, $|S \cap T|$.
We seek integers x in both S and in T. The first property means that $x=6 k$, for some integer k. The second means that $x y=6 k y=60$, for some integer y. Hence $k y=10$, so $k \mid 10$. This gives solutions $k= \pm 1, \pm 2, \pm 5, \pm 10$; i.e. $S \cap T=$ $\{6,-6,12,-12,30,-30,60,-60\}$ so $|S \cap T|=8$.
7. Let A, B, C be sets with $A \backslash B \subseteq C$. Prove that $A \subseteq B \cup C$.

Let $x \in A$. There are now two cases, depending on whether $x \in B$ or $x \notin B$.
Case $x \in B$: By addition, $x \in B \vee x \in C$, so $x \in B \cup C$.
Case $x \notin B$: By conjunction, $x \in A \wedge x \notin B$, so $x \in A \backslash B$. Because $A \backslash B \subseteq C$, we have $x \in C$. By addition, $x \in B \vee x \in C$, so $x \in B \cup C$.
In both cases, $x \in B \cup C$.
8. Let S, T be sets and R_{1}, R_{2} relations from S to T. Suppose that $R_{1} \subseteq R_{2}^{-1}$ and $R_{2} \subseteq R_{1}^{-1}$. Prove that $R_{1}=R_{2}^{-1}$.
We have $R_{1} \subseteq R_{2}^{-1}$ by hypothesis, to it only remains to prove that $R_{2}^{-1} \subseteq R_{1}$.
Let $x \in R_{2}^{-1}$ be arbitrary. Then $x=(b, a)$, where $(a, b) \in R_{2}$. Because $R_{2} \subseteq R_{1}^{-1}$, we have $(a, b) \in R_{1}^{-1}$. Thus $(b, a) \in R_{1}$. But that's just x, so we have proved $x \in R_{1}$.
For problems 9,10:
Let $A=\{1,2,3,4\}$ and take $R=\{(1,1),(1,2),(2,1),(3,4),(4,3)\}$, a relation on A.
9. Draw the digraph representing R. Determine, with justification, whether or not R is each of: reflexive, symmetric, and transitive.

R is not reflexive because, e.g., $(2,2) \notin R$.
R is symmetric because for every pair of vertices, either both directed
edges or neither are present.
$4 \sim 3 R$ is not transitive because, e.g., $(3,4),(4,3) \in R$ and $(3,3) \notin R$.
10. Compute $R \circ R$. Give your answer both as a digraph and as a set.

$R \circ R=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$.
Note: every missing or extra piece in a solution, will cost points.

